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Abstract

Fire debris analysis aims to detect and identify any ignitable liquid residues in burnt residues collected at a fire scene. Typically, the burnt residues
are analysed using gas chromatography–mass spectrometry (GC–MS) and are manually interpreted. The interpretation process can be laborious
due to the complexity and high dimensionality of the GC–MS data. Therefore, this study aims to compare the potential of classification and
regression tree (CART) and naïve Bayes (NB) algorithms in analysing the pixel-level GC–MS data of fire debris. The data comprise 14 positive
(i.e. fire debris with traces of gasoline) and 24 negative (i.e. fire debris without traces of gasoline) samples. The differences between the
positive and negative samples were first inspected based on the mean chromatograms and scores plots of the principal component analysis
technique. Then, CART and NB algorithms were independently applied to the GC–MS data. Stratified random resampling was applied to
prepare three sets of 200 pairs of training and testing samples (i.e. split ratio of 7:3, 8:2, and 9:1) for estimating the prediction accuracies.
Although both the positive and negative samples were hardly differentiated based on the mean chromatograms and scores plots of principal
component analysis, the respective NB and CART predictive models produced satisfactory performances with the normalized GC–MS data,
i.e. majority achieved prediction accuracy >70%. NB consistently outperformed CART based on the prediction accuracies of testing samples
and the corresponding risk of overfitting except when evaluated using only 10% of samples. The accuracy of CART was found to be inversely
proportional to the number of testing samples; meanwhile, NB demonstrated rather consistent performances across the three split ratios. In
conclusion, NB seems to be much better than CART based on the robustness against the number of testing samples and the consistent lower
risk of overfitting.
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Introduction

Forensic fire investigation consists of determining the origin,
ignition source, cause, and development of fire [1]. In general,
the success in fire investigation depends on both field investi-
gation and laboratory-based analysis to determine and iden-
tify ignitable liquids (ILs) found at the scene [2]. ILs, including
gasoline, kerosene, and diesel, are among the few frequently
encountered in a fire scene, with gasoline emerging to be
the most popular one attributed to its combustion efficiency,
readiness, and low cost [3–5]. ILs are essentially a mixture of
volatile organic compounds (VOCs) and thus can be detected
using gas chromatography–mass spectrometry (GC–MS). The
GC–MS data of ILs are laborious to be interpreted caused
by its inherent complex composition and matrix effects, e.g.
thermal decomposition or pyrolysis of the matrix [6–10].

In practice, American Society for Testing and Materials
(ASTM) Standard E1618 [11] has established a number
of markers for identifying gasoline, diesel, and kerosene
based on GC–MS data. The guideline describes interpretation
procedures involving the extracted ion chromatogram (EIC)

and total ion chromatogram (TIC) of the GC–MS output.
EIC presents the total ion counts of a particular or predefined
range of m/z value over the retention time. Meanwhile, TIC
shows the total ion counts over the full range of studied m/z
value [12]. Mathematically, EIC is the subset of TIC.

More recently, chemometric techniques have been widely
studied in fire debris analysis to aid analysts in interpreting
the complicated TICs of burnt residues [13, 14]. For instance,
Sinkov et al. [4] reported the use of partial least squares-
discriminant analysis (PLS-DA) and soft independent mod-
elling of class analogies methods in discriminating samples
containing and without gasoline. Recently, Allen et al. [15]
integrated likelihood ratios into a PLS-DA model for predict-
ing the presence of ignitable liquid residues (ILRs) based on
TICs collected from 9 000 simulated fire debris. The authors
reported that the PLS-DA model could be a feasible model for
the forensic analysis of fire debris data. On the other hand,
Ugena et al. [16] evaluated the potential of neural networks
in discriminating fuels based on gas chromatography-flame
ionization detector data.
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To date, and to the best of our knowledge, there is no
such research comparing the classification and regression tree
(CART) and naïve Bayes (NB) algorithms using pixel-level
GC–MS data, particularly in the context of fire debris analysis.
Hence, this work aims to compare the performance of CART
and NB in predicting the presence of gasoline in fire debris
based on the pixel-level GC–MS data. In addition, principal
component analysis (PCA) was also performed to explore the
data prior to the predictive modelling. Due to the small sample
size, model performances including prediction accuracy and
its variability, and overfitting of model have been derived
using the stratified random resampling method.

Materials and methods

The GC–MS data of fire debris were obtained from the Fire
Investigation Laboratory of Selangor, Fire and Rescue Depart-
ment of Selangor (FRDS), Shah Alam, Malaysia with permis-
sion for using in this study. All the fire debris was collected
for fire cases happening from November until December 2020
in Selangor, Malaysia. The GC–MS profiles of the fire debris
have been prepared by a certified chemist based at FRDS,
Malaysia. Both the sample preparation and GC–MS methods
are adopted from the ASTM standards, i.e. E1618 [11] and
E2154-15a [17]. The following sections describe the analytical
procedures in detail.

Burnt residue sampling

The collection of real fire debris samples has been performed
by the fire investigator of the FRDS, Malaysia. All the fire
debris were separately kept in nylon arson evidence bags (Tri-
tech Forensics, Executive Park Blvd, Southport, NC, USA)
and fastened tightly to avoid VOCs loss. Nylon bags are
commonly used for fire debris collection since they are easy
for storage and transportation [2].

Headspace concentration-solid phase

microextraction and GC–MS analysis

The ILRs of the samples were first extracted using a headspace
concentration-solid phase microextraction (HS-SPME) proce-
dure. A 65 μm polydimethylsiloxane-divinylbenzene (PDMS/
DVB) fibre housed in a manual SPME holder (Supelco, Belle-
fonte, PA, USA) was used for the extraction. To ensure no com-
ponent peak arose from the SPME membrane, the fibre blank
was first introduced into the GC–MS system and analysed
according to the method used for analysing ILRs extracted
from the fire debris samples. Given a fire debris sample,
headspace was first created by keeping it in an oven at 90◦C
for 15 min. Then, the nylon bag was removed from the oven
and subsequently pierced with the SPME needle. After 20 min,
the SPME needle was removed and directly inserted into the
gas chromatographic injector port. An SPME fibre blank was
performed each time before a new sample injection to ensure
no carryover of the previous sample.

All the GC–MS analyses were performed on a PerkinElmer
Clarus® 680 gas chromatography coupled with a Clarus® SQ
8T mass spectrometry (Waltham, MA, USA). Table 1 presents
the parameters adopted to perform the GC–MS analysis. The
GC–MS data were acquired by a PerkinElmer TurboMass
(version 6.1.0).

Interpretation of fire debris

All the fire debris samples were examined for any ILRs
by a certified chemist based at FRDS. Given a sample, the

Table 1. Parameters of gas chromatography-mass spectrometry method.

Parameter Description

Column Elite-5MS (30 m × 250 μm
(I.D.), 0.25 μm)

Carrier gas Helium, 1.0 mL/min
Inlet temperature 200◦C
Initial temperature 50◦C
Initial hold time 2.5 min
Ramp rate 15.0◦C/min
Final temperature 300◦C
Final hold time 5.82 min
Mass spectrum detection

transfer line temperature
200◦C

Source temperature 200◦C
Scan range 45–450 amu

overall TIC pattern is first visually inspected to look for
any prominent markers of IL by comparing it against a TIC
of neat IL, e.g. gasoline (prepared on the same day as the
sample using the same methods and GC–MS system). For a
sample showing a sufficient number of prominent IL markers,
further examination will involve chemical identification of
the markers via mass spectral library searching. In case the
TIC of the sample is heavily masked by peaks from pyrolysis
product or background, EIC of selected compounds, as stated
in ASTM standard E1618 [11], is prepared for both samples
and neat IL, then, they are compared for the presence of
important markers of the IL. Sample detected with gasoline is
labelled as “ILR detected”or otherwise as “ILR not detected”.
IL detected in a fire debris is then further classified into one
of the types defined by ASTM standard E1618, i.e. gasoline,
petroleum distillates (kerosene, diesel fuel, cigarette lighter
fluids), isoparaffinic products (aviation gas), aromatic prod-
ucts (toluene-based products), naphthenic-paraffinic products
(solvent), normal alkane products (candle oils, lamp oil),
mixture oxygenated solvents (alcohols, ketones), and others–
miscellaneous (turpentine products).

Preparing TIC data

For the sake of brevity, all negative samples and only fire
debris detected containing gasoline were studied herein. This
study replaced the initial labels, so fire debris detected with
gasoline was known as positive and otherwise as negative
samples. The raw format of all selected samples was first
exported from the desktop connected to the GC–MS system
and saved in an external hard disc. Next, the data were
imported into another working desktop and converted into a
format that can be processed by a statistical software. First, the
.raw data were converted into mzXML format via MSconvert
software [18, 19]. Next, the resulting mzXML data were
imported into Mass++ software [20] to obtain the full TIC
data in .txt format. All the .txt files were arranged in the form
of a matrix and saved in a Microsoft Excel® (Denver, CO,
USA) spreadsheet.

The final data matrix is composed of 38 chromatograms,
i.e. TICs, and readily be classified into two classes: (i) 14
positive (gasoline detected); and (ii) 24 negative (no gasoline
detected). Each chromatogram was presented with 4 999 vari-
ables. The sampling point of the GC–MS was set in such a
way that each chromatogram covering retention time from
0 to 25 min was eventually presented with 4 999 intensity
values.
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Statistical data analysis

All the statistical analyses were accomplished in the R statis-
tical software, v. 3.6.2 [21]. First, the mean chromatograms
of positive and negative samples were computed using an
in-house function. Then, PCA [22, 23] was performed using
the function prcomp to explore the data matrix via scores
plots. Meanwhile, CART and NB modelling were executed
using codes provided by e1071 [24] and rpart [25] packages,
respectively.

Normalization

In practice, the SPME method does not allow the researcher
to determine the quantity of extract injected into the GC–MS
system. Hence, it is important to first eliminate bias due to the
unequal initial amount of sample via normalization by con-
verting the signals into relative values [26, 27]. Normalization
to sum was performed by dividing each of the 38 TICs with the
respective sum of 4 999 intensity values (of 4 999 variables).

CART

Several recently published articles have demonstrated the
success of the decision tree model in solving forensic problems,
e.g. sex estimation [28, 29] and paper discrimination [30].
However, there has been no attempt to evaluate the potential
of decision tree in modelling GC–MS data of fire debris.
CART is one of the most used algorithms to construct a
decision tree model [31]. The algorithm aims to split the data
recursively until reaching purity. Herein, the CART algorithm
splits the TIC data into either positive or negative classes
according to a specific variable (i.e. retention time point). The
splitting is governed by the Gini coefficient that evaluates the
reduction of heterogeneity [32].

NB

NB classifier is far more popular than the CART and was also
proven to be useful in the field of forensic science, e.g. forensic
anthropology [33]. Recently, Bogdal et al. [34] demonstrated
the merits of various machine learning algorithms to detect
gasoline in fire debris. Even though NB has been evaluated in
their work, the relative performance between NB and CART
in modelling GC–MS data of fire debris was not of their
concern. Thus, this is the first work comparing NB with CART
in fire debris analysis. NB classification relies on the Bayes rule
[35] as expressed by Equation (1):

P
(
y|x) = P

(
x|y)

P(y)

P(x)
(1)

where x denotes a particular retention time; y refers to the
presence of gasoline in the sample, i.e. positive or negative.
In this work, the ratio of positive and negative samples was
unbalanced. Thus, the class a priori probabilities, P(x), played
a role in the modelling problem. The P

(
x|y)

was determined
according to the training data. The NB model was used in
predicting the presence of gasoline in a fire debris sample (y)
submitted to the laboratory. Given a TIC of an unknown burnt
residue, the presence of gasoline (y) is predicted as positive if
the posterior probability of the positive class P

(
ypositive|x

)
is

higher than the negative class P
(
ynegative|x

)
.

Model validation

To minimize bias caused by the small sample size and unbal-
anced group sizes, stratified random resampling was adopted

to prepare varying pairs of training and test sets. The ran-
dom sampling was separately performed in positive and neg-
ative samples, i.e. stratified random resampling, to ensure
both the training and testing samples have the same propor-
tion of classes. The resampling was performed at three split
ratios (i.e. 7:3, 8:2, and 9:1), respectively, repeated 200 times.
Then, the prediction accuracies were estimated using the
training (AccAP) and testing (AccET) samples, Equations (2)
and (3):

AccAP = n∗
train

ntrain

(
n∗

train ≤ n
)

(2)

AccET = n∗
test

ntest

(
n∗

test ≤ n
)

(3)

where n and n∗ refer to the total of (training/testing) samples
and number of samples correctly predicted by the model.

Eventually, the NB and CART models were presented with
three series of prediction accuracy by the training and testing
samples. Hence, the predictive capability of a model was
evaluated based on the average of the 200 prediction accu-
racies by the three split ratios, see Equation (4). Meanwhile,
the variability of the 200 prediction accuracies was assessed
graphically by beeswarm plot. Squared of difference between
prediction accuracies of training and testing samples (SDP)
denoted by Equation (5) was determined for evaluating the
risk of overfitting [36].

Acc = 1
R

(
R∑

r=1

Accr

)
(4)

SDP = 1
R

R∑
r=1

(AccAP − AccET)2 (5)

Results

Mean chromatogram

Generally, it is most desired that the positive and negative
samples showed highly different chromatographic profiles.
Figure 1A and B illustrates the raw and the corresponding
normalized mean chromatograms of the positive and negative
samples, where each was averaged from 14 to 24 samples,
respectively. Basically, the negative samples were found to
show slightly more peaks than the positive ones. The peaks
were contributed by volatile compounds extracted from fire
debris but did not originate from the ILs. According to Sander-
cock [37], pyrolysis, combustion, and distillation typically
happened in a fire scene. These processes often produce
varying numbers of volatile and semi-volatile background
compounds similar to VOCs of ILs.

Meanwhile, both the positive and negative samples pre-
sented a high number of peaks eluting between 0 and 15 min.
It is worth noting that the peak heights were comparable
between positive and negative samples after the data were nor-
malized (Figure 1B). Prior to normalization, the peak height
was found to be dependent on the initial quantity of the
SPME extract. Though, the overall peak distributional pat-
terns observed remained unchanged. This is expected since
normalization only converts the signals from absolute val-
ues to relative ones. In the following sections, only results
obtained from the normalized data were presented since the
raw data were found to be flawed herein.
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Figure 1 Mean chromatograms of the (A) raw and (B) normalized total ion
chromatogram. Pos: positive; Neg: negative.

Scores plot of PCA

Next, the spatial distribution of the negative and positive
samples after normalization was inspected using scores plots
of PCA. The normalized TIC data were mean centred before
processing by PCA. Mathematically, mean-centring does not
change the nature of the data but ease the interpretability of
the results [38]. Figure 2 shows the six 2D score plots of PCA
computed from the first 12 PCs. Although none of the PCs
showed a perfect separation between the positive and negative
samples, the second PC (PC2) split most samples into the two
groups. The remaining PCs have the samples scattered widely
without any clear grouping by the presence of gasoline.

Since PCA identifies the linear combination (of 4 999 vari-
ables) i.e. called the PC with maximum variance in the dataset,
it is always expected the most desired separation would be
obtained with PC1 and then PC2. However, PC2 was found
to show a better separation between the positive and negative
samples than that obtained using PC1. Thus, it seems sound
to postulate here that only the minority variance of the
TIC data helps explain the difference between the positive
and negative samples. Most of the variance is irrelevant in
explaining the difference between the positive and negative
samples.

Performances of predictive models

Table 2 shows the individual class and overall mean prediction
accuracies of testing samples as well as the SDP values by the
split ratio (i.e. 7:3, 8:2, and 9:1) and modelling algorithms
(CART and NB). A lower SDP value is preferred herein since
it indicates the model would perform well in a real-world
setting [36]. Meanwhile, Figure 3 illustrates the variability
of the 200 prediction accuracies estimated from the testing
samples between the CART and NB models using beeswarm
plots and presented by the three split ratios.

Despite the fact that none of the models has achieved 100%
prediction accuracy, the majority of the models achieved

accuracy >70%, denoting the potential of machine learn-
ing in predicting the presence of gasoline. It is noted that
the prediction accuracy of CART was inversely proportional
to the number of testing samples, i.e. the highest accuracy
was achieved using 10% of samples (79.33%). The outper-
formance of CART derived using only 10% of samples is
attributed to its better capability in predicting positive samples
(Figure 3C). On the other hand, the performance of NB was
relatively consistent across the three different split ratios, with
the highest accuracy derived using 20% of samples (78.63%).

Overall, NB seems to be outperformed CART based on
three grounds. First, NB achieved higher accuracy in two
of the three split ratios. Although the highest accuracy was
obtained by CART, the challenge of predicting 10% of the
sample is definitely lower than predicting 20% or 30% of
the samples. Next, CART achieved only an additional 2%
accuracy rate than the NB (in the 9:1 set); meanwhile, NB
always showed an additional 9% accuracy than the CART
(in 7:3 and 8:2 sets). Last but not least, NB demonstrated
better potential than CART in terms of risk of overfitting; NB
showed the same risk of overfitting as CART even though the
latter achieved higher prediction accuracy. On the contrary,
CART had always presented a higher risk of overfitting when
NB achieved higher prediction accuracy.

Discussions

This work is the first report on relative performances of
CART and NB algorithms in modelling TICs for detecting
ILRs. Even though the data comprised only 38 samples, the
predictive models have been intensively evaluated via strat-
ified random resampling method. Both the algorithms were
compared according to three aspects: (i) prediction accuracy,
(ii) variability of the prediction accuracy, and (iii) risk of
overfitting.

Generally, NB was tended to outperform the CART algo-
rithm in modelling the binary problem of TIC data. As men-
tioned above, NB determines the class of an unknown sam-
ple based on posterior probability computed from all the
input variables and incorporating an a priori probability
[39]. Meanwhile, CART is an ensemble method composing
variable selection and predictive modelling [40]. Hence, the
outperformance of NB demonstrated herein can be explained
by two rationales.

Attributed to the higher ratio of sample in the negative
group, both CART and NB models tended to obtain higher
prediction accuracy with the negative class, except when
tested using only 10% of the samples. However, the relative
difference between positive and negative classes’ accuracies
was more prominent in the CART models than in the
NB models. NB models are believed to have minimized
the discrepancy by incorporating the unequal a priori into
the posterior probability. On the other hand, the CART
algorithm cannot minimize the bias in predicting the testing
samples.

Theoretically, CART has not considered all the 4 999 vari-
ables concurrently in predictive modelling but selects a few
variables to construct the model. On the contrary, NB com-
putes the posterior probability of a given class from all the
4 999 variables. By referring to Figure 1, one can see that most
of the peaks were not sharp or fully resolved as a single peak,
i.e. a single retention time point was insufficient to denote
a peak. Since CART considers only a retention time point



FORENSIC SCIENCES RESEARCH 253

Figure 2 Scores plots of principal component analysis (PCA) computed using the normalized total ion chromatogram (TICs) constructed using the first 12
PCs: (A) PC1 vs PC2, (B) PC3 vs PC4, (C) PC5 vs PC6, (D) PC7 vs PC8, (E) PC9 vs PC10, and (F) PC11 vs PC12 light gray square: positive samples; dark
gray square: negative samples.

Table 2. Average of 200 prediction accuracies of testing samples and the respective SDP value.

Split ratio Model Prediction accuracy SDP

Negative Positive Overall

7:3 CART 73.07 60.00 68.32 0.0246
NB 79.29a 76.38a 78.23a 0.0217a

8:2 CART 73.20 60.83 68.56 0.0246
NB 79.60a 77.00a 78.63a 0.0217a

9:1 CART 76.75a 84.50a 79.33a 0.0238
NB 76.50 79.00 77.33 0.0238

aThe more outstanding model. SDP: squared of difference between prediction accuracies; CART: Classification and regression tree; NB: naïve Bayes.

at a time, this explains the underperformance of the CART
algorithm compared with the NB algorithm in this work.

Even though the NB models were found to outperform
CART models, it is worth mentioning that the external pre-
diction accuracy of NB models never reached >80%. This
could be partially explained by the fact that the TIC data

did not comply with at least two assumptions of the NB
algorithm, i.e. normal distribution and independent variables.
In this study, the variables referred to the 4 999 intensity values
of each chromatogram. As highlighted above, none of the
peaks is truly well resolved and resembles a sharp peak in the
TIC; thus, it is sensible to assume adjacent intensity values
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Figure 3 Beeswarm plots showing variability of 200 prediction accuracies
estimated using the testing samples presented by classification and
regression tree (CART) and naive Bayes (NB) models and split ratio: (A)
7:3, (B) 8:2, and (C) 9:1.

contributing to a peak are dependent on each other. Next,
the normality assumption can hardly be fulfilled due to the
relatively small sample size.

Limitation

There is an informal consensus that chromatographic data are
inherently affected by drifted retention time. As such, peak
alignment is often performed to minimize variations caused
by the limitation. Despite a wide range of peak alignment
algorithms proposed in the literature, most of them work
on a target or reference chromatogram, e.g. chromatograms
of a standard sample or a mean chromatogram of replicate
samples [41]. As described above, the data were provided by
the FDRM without a chromatogram of standard sample, and
each sample was analysed only once without any replicate
available to us. Consequently, the data have not been corrected
using any peak alignment algorithm due to the technical
constraint. Though the absolute performance values of CART
and NB reported herein could have been improved after peak
alignment, their relative performances presented above are
still valid.

Conclusions

In conclusion, NB is much better than CART based on the
robustness against the number of testing samples and the

consistent lower risk of overfitting. Despite the fact that
peak alignment was not performed, and the data were also
limited in sample size, the relative performances of the two
modelling algorithms reported herein are reliable since a strat-
ified random resampling method has been deployed to derive
the model performances. In future work, the true predictive
capability of the NB algorithm in pixel-level GC–MS data of
fire debris shall be estimated using a bigger sample size, and
peak alignment must be executed before predictive modelling.
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